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Abstract Let H be a real Hilbert space. Let F :D(F) ⊆ H → H, K : D(K ) ⊆ H → H
be bounded and continuous mappings where D(F) and D(K ) are closed convex subsets of
H . We introduce and consider the following system of variational inequalities: find [u∗, v∗] ∈
D(F)× D(K ) such that

{ 〈Fu∗ − v∗, x − u∗〉 ≥ 0, x ∈ D(F),
〈Kv∗ + u∗, y − v∗〉 ≥ 0, y ∈ D(K ).

This system of variational inequalities is closely related to a pseudomonotone variational
inequality. The well-known projection method is extended to develop a mixed projection
method for solving this system of variational inequalities. No invertibility assumption is
imposed on F and K . The operators K and F also need not be defined on compact subsets
of H .

Keywords Hilbert space · Variational inequality · Pseudomonotonicity · Mixed projection
method
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1 Introductions and preliminaries

Let H be a real Hilbert space with norm and inner product denoted by ‖ · ‖ and 〈·, ·〉, respec-
tively. Let F : D(F) ⊆ H → H be a nonlinear operator, where the domain of F is a
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nonempty closed convex subset of H . The classical variational inequality problem is to find
x∗ ∈ D(F) such that

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ D(F).

A survey on the variational inequality problem in finite-dimensional spaces was done by
Harker and Pang [6]. In [6], the reader will find motivations, examples, results, and a vast
bibliography. Various iterative methods have been suggested and proposed for solving var-
iational inequalities. In particular, the projection method and its variant forms have widely
been studied and applied to solving variational inequalities and various generalizations of
variational inequalities; see for example [18–20].

Let A be an operator with domain and range denoted by D(A) and R(A), respectively. In
what follows, we recall some concepts which will be used in the sequel.

Definition 1.1 [3] Let A : D(A) ⊆ H → H be a mapping.

(i) A is called monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ D(A);
(ii) A is called maximal monotone if it is monotone and R(I + r A) = H for each r > 0,

where I is the identity mapping on H and R(I + r A) denotes the range of (I + r A);
(iii) A is said to satisfy the range condition if cl(D(A)) ⊆ R(I + r A) for each r > 0

where cl(D(A)) denotes the closure of the set D(A);
(iv) A is called uniformly monotone if there exists a strictly increasing function φ :

[0,∞) → [0,∞) with φ(0) = 0 such that

〈Ax − Ay, x − y〉 ≥ φ(‖x − y‖).
The notion of monotone operators was introduced independently by Zarantonello [17]

and Minty [9]. In Definition 1.1 (iv), if φ(t) = tψ(t) for ψ : [0,∞) → [0,∞) with
ψ(0) = 0, ψ strictly increasing, then A is called ψ-strongly monotone; if there exists k > 0
such thatφ(t) = kt2, then A is called strongly monotone. We have the following implications:

strong monotonicity ⇒ ψ − strong monotonicity ⇒ uniform monotonicity

⇒ monotonicity.

It is well known that interest in monotone mappings stems mainly from their firm con-
nection with equations of evolution. Several problems that arise in differential equations, for
instance, elliptic boundary value problems whose linear parts possess Green’s function, can
be put in operator form as

u + K Fu = 0, (1.1)

where K and F are monotone operators (see [4] for more details).
Recently, Chidume and Zegeye [4] introduced a method that contains an auxiliary oper-

ator, defined in an appropriate real Banach space in terms of K and F which under certain
conditions, isψ-strongly monotone whenever K and F areψ-strongly monotone and whose
zeros are solutions of Eq. 1.1. Further, Chidume and Zegeye [3] employed this method to
obtain an auxiliary operator that is monotone whenever K and F ψ-strongly monotone and
to construct an iterative procedure that converges strongly to the solution of Eq. 1.1.

On the other hand, we first recall the concept of pseudomonotonicity. A mapping A :
D(A) ⊆ H → H is called pseudomonotone if for each x, y ∈ D(A) there holds

〈Ax, y − x〉 ≥ 0 ⇒ 〈Ay, y − x〉 ≥ 0.
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Pseudomonotonicity is understood here in the sense of Karamardian [8] and not in the sense
of Brézis [1]. The latter concerns some topological properties on the operator. A mapping
A : D(A) ⊆ H → H is strongly pseudomonotone [7] if there exists a constant κ > 0 such
that for each x, y ∈ D(A) there holds

〈Ax, y − x〉 ≥ 0 ⇒ 〈Ay, y − x〉 ≥ κ‖y − x‖2.

We illustrate hereafter the relationships (see [16,13]) between the monotonicity assump-
tion and some generalized monotonicity assumptions:

strong monotonicity ⇒ monotonicity
⇓ ⇓

strong pseudomonotonicity ⇒ pseudomonotonicity

Let H be a real Hilbert space and let F : D(F) ⊆ H → H , K : D(K ) ⊆ H → H be
non-linear mappings where D(F) and D(K ) are closed convex subsets of H . Let us consider
the following system of variational inequalities: find [u∗, v∗] ∈ D(F)× D(K ) such that{ 〈Fu∗ − v∗, x − u∗〉 ≥ 0, x ∈ D(F),

〈Kv∗ + u∗, y − v∗〉 ≥ 0, y ∈ D(K ).
(1.2)

We define the set of all solutions of system (1.2) by

� := {[u∗, v∗] ∈ D(F)× D(K ) : [u∗, v∗] satisfies system (1.2)}
The following is elementary.

Proposition 1.1 [3] Let H be a real Hilbert space. Let E := H × H with norm

‖z‖E := (‖u‖2
H + ‖v‖2

H )
1/2, where z = [u, v].

Then E is a real Hilbert space and for w1 = [u1, v1], w2 = [u2, v2] ∈ E we have that
〈w1, w2〉 = 〈u1, u2〉 + 〈v1, v2〉.

In the sequel we shall need the following results.

Lemma 1.1 [15] Let {βn}∞n=0 be a sequence of non-negative real numbers with

βn+1 ≤ (1 − δn)βn + σn, n = 0, 1, 2, . . . ,

where δn ∈ [0, 1], ∑∞
n=0 δn = ∞ and σn = o(δn). Then limn→∞ βn = 0.

Theorem SR [12] Let H be a real Hilbert space. Let A ⊂ H × H be monotone with
cl(D(A)), the closure of D(A), convex and suppose that A satisfies the range condition:
cl(D(A) ⊂ R(I + r A),∀r > 0. Let Jt x := (I + t A)−1x, t > 0 be the resolvent of A and
assume that A−1(0) is nonempty. Then for each x ∈ H , limt→∞ Jt x = PK x ∈ A−1(0)
where PK is the metric projection from cl(D(A)) onto A−1(0).

Theorem TZ [14] Let H be a Hilbert space and let A : D(A) ⊆ H → H be a maximal
monotone mapping. Suppose that for some x0 ∈ D(A) and r > 0 we have ‖Ax0‖ < r ≤
lim infx∈D(A),‖x‖→∞ ‖Ax‖. Then Br (0) = {x ∈ E : ‖x‖ < r} ⊆ R(A).
Theorem CZ [2] Suppose K is a closed convex subset of a Hilbert space H . Suppose
A : K → H is a bounded uniformly monotone map and that the equation Ax = 0 has a
solution. For arbitrary x1 ∈ K , define the sequence {xn} iteratively by

xn+1 := PK (xn − αn Axn), n ≥ 1, (1.3)
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where limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then there exists a constant d0 > 0 such that if
0 < αn ≤ d0, then {xn} converges strongly to the unique solution of Ax = 0.

We remark that Theorems SR, TZ and CZ are, respectively, special cases of theorems
proved in more general Banach spaces in Reich [12] (Theorem 1, Remarks 1 and 2), Takah-
ashi and Zhang [14] and Chidume and Zegeye [2] (Theorem 3.8).

Lemma 1.2 [[3] Lemma 3.1]. Let H be a real Hilbert space. Let F : D(F) ⊆ H → H ,
K : D(K ) ⊆ H → H be monotone mappings. Let E := H × H with norm ‖z‖2

E =
‖u‖2

H + ‖v‖2
H for z := [u, v] ∈ E . Define a mapping T : D(F) × D(K ) → E by

T z = T [u, v] := [Fu − v, u + Kv]. Then for each z1, z2 ∈ D(F)× D(K ) we have that

〈T z1 − T z2, z1 − z2〉 ≥ 0,

i.e., T is monotone. Moreover, if F and K are bounded, then T is bounded.
We remark that the method of proof of Lemma 3.1 [3] also yields that if F and K are

uniformly monotone, then T is uniformly monotone with φ := min{φ1, φ2} where φ1 and
φ2 are the strictly increasing functions corresponding to F and K , respectively.

Lemma 1.3 [11] Let {an}∞n=0, {bn}∞n=0 and {δn}∞n=0 be sequences of nonnegative real num-
bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 0.

If
∑∞

n=0 δn < ∞ and
∑∞

n=0 bn < ∞, then limn→∞ an exists. If in addition {an}∞n=0 has a
subsequence which converges strongly to zero, then limn→∞ an = 0.

We shall need the following concept in the sequel.

Definition 1.2 [3] Let D1 and D2 be subsets of a real Hilbert space H . Let F : D1 → H
and K : D2 → H be monotone mappings. Then D1 and D2 are said to satisfy property (P)
if D1 ⊆ (I + r F)(D1)− D2 and D2 ⊆ (I + r K )(D2)+ D1 for each r > 0.

Remark 1.1 If F and K satisfy the range condition and if D(F) and D(K ) contain the origin,
then condition (P) is satisfied. Moreover, if D(F) = D(K ) = H and if K , F satisfy the
range condition, then condition (P) is clearly satisfied.

In 2004, Chidume and Zegeye [3] established the following important result on the iterative
approximation of solutions to equation (1.1).

Theorem 1.1 [3] Let H be a real Hilbert space. Let F : D(F) ⊆ H → H , K : D(K ) ⊆
H → H be bounded monotone mappings with R(F) ⊆ D(K ) where D(F) and D(K ) are
closed convex subsets of H satisfying property (P). Suppose that the equation 0 = u + K Fu
has a solution in D(F). Let {λn} and {θn} be real sequences in (0, 1] satisfying the following
conditions:

(i) limn→∞ θn = 0;
(ii)

∑∞
n=1 λnθn = ∞, limn→∞ λn/θn = 0;

(iii) limn→∞( θn−1
θn

− 1)/(λnθn) = 0. Let sequences {un} ⊆ D(F) and {vn} ⊆ D(K ) be
generated from u0 ∈ D(F) and v0 ∈ D(K ), respectively, by

un+1 = PD(F)(un − λn(Fun − vn + θn(un − w1))),

vn+1 = PD(K )(vn − λn(Kvn + un + θn(vn − w2))),
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where w1 ∈ D(F), w2 ∈ D(K ) are arbitrary but fixed. Then there exists d > 0 such that
if λn ≤ d and λn/θn ≤ d2 for all n ≥ 0, the sequences {un} and {vn} converge strongly
to u∗ and v∗, respectively, in H , where u∗ is a solution of the equation 0 = u + K Fu and
v∗ = Fu∗.

2 Main results

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, respectively. Following
Lemma 1.2, we let E := H × H be endowed with norm ‖z‖2

E = ‖u‖2
H + ‖v‖2

H for z =
[u, v] ∈ E . Moreover, we define an auxiliary operator T : D(T ) = D(F)× D(K ) → E by

T z = T [u, v] := [Fu − v, u + Kv], ∀z = [u, v] ∈ D(F)× D(K ).

Theorem 2.1 Let H be a real Hilbert space. Let F : D(F) ⊆ H → H , K : D(K ) ⊆ H →
H be bounded continuous mappings such that T : D(T ) → E is pseudomonotone where
D(F) and D(K ) are closed convex subsets of H . Suppose that � �= ∅. Let {αn}, {λn} and
{θn} be real sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ θn = 0;
(ii)

∑∞
n=1 λnθn < ∞, limn→∞ λn/θn = 0;

Let sequences {un} ⊆ D(F) and {vn} ⊆ D(K ) be generated from u0 ∈ D(F) and
v0 ∈ D(K ), respectively, by{

un+1 = (1 − αn)un + αn PD(F)(un − λn(Fun − vn + θn(un − w1))),

vn+1 = (1 − αn)vn + αn PD(K )(vn − λn(Kvn + un + θn(vn − w2))),
(2.1)

where w1 ∈ D(F), w2 ∈ D(K ) are arbitrary but fixed. Then there exists d > 0 such that
whenever λn ≤ d and λn/θn ≤ d2 for all n ≥ 0, {zn} converges strongly to an element of �
if and only if lim infn→∞ d(zn,�) = 0, where zn = [un, vn],∀n ≥ 0 and d(x,C) denotes
the distance of x to the set C in H .

Proof Recall that there holds the following equality

‖λz1 + (1 − λ)z2‖2 = λ‖z1‖2 + (1 − λ)‖z2‖2 − λ(1 − λ)‖z1 − z2‖2

for all z1, z2 ∈ H and 0 ≤ λ ≤ 1.
“Necessity.” Suppose {zn} converges strongly to an element z∗ = [u∗, v∗] of�. Then we

derive

d(zn,�) ≤ d(zn, z∗) = ‖zn − z∗‖ → 0, as n → ∞.

Hence,

lim inf
n→∞ d(zn,�) = 0.

“Sufficiency.” Suppose lim infn→∞ d(zn,�) = 0. We divide the remainder of the proof
into several steps below.

Step 1. We claim that the sequences {un} and {vn} conforming to (2.1) are well defined.
Indeed for initial point z0 := [u0, v0], define the sequence {zn} by

zn+1 := (1 − αn)zn + αn PD(F)×D(K )(zn − λn(T zn + θn(zn − w))), (2.2)

123



470 J Glob Optim (2008) 41:465–478

for arbitrary but fixed w = [w1, w2]. One can show that zn+1 = [un+1, vn+1]. In fact, it
suffices to show that PD(F)×D(K )[u, v] = [PD(F)u, PD(K )v]. Observe that

‖PD(F)×D(K )[u, v] − [u, v]‖2
E = min[x,y]∈D(F)×D(K )

‖[u, v] − [x, y]‖2
E

= min[x,y]∈D(F)×D(K )
{‖u − x‖2

H + ‖v − y‖2
H }

= ‖PD(F)u − u‖2
H + ‖PD(K )v − v‖2

H= ‖[PD(F)u − u, PD(K )v − v]‖2
E= ‖[PD(F)u, PD(K )v] − [u, v]‖2
E

(2.3)

(equality (2.3) follows since ‖ · ‖2 is a continuous and convex function). This implies that
‖PD(F)×D(K )[u, v] − [u, v]‖ = ‖[PD(F)u, PD(K )v] − [u, v]‖. Then by the uniqueness of
the projection we deduce that PD(F)×D(K )[u, v] = [PD(F)u, PD(K )v]. Consequently, (2.1)
is equivalent to (2.2). Hence this shows that the sequences {un} and {vn} are well defined.

Step 2. We claim that the sequence {zn} is bounded. Indeed, let z∗ = [u∗, v∗] be a solution
of system (1.2). Then we have that{ 〈Fu∗ − v∗, u − u∗〉 ≥ 0, u ∈ D(F),

〈Kv∗ + u∗, v − v∗〉 ≥ 0, v ∈ D(K ),

which implies that

〈T z∗, z − z∗〉 ≥ 0, ∀z = [u, v] ∈ D(T ).

Since T : D(T ) → E is pseudomonotone, we obtain that

〈T z, z − z∗〉 ≥ 0, ∀z = [u, v] ∈ D(T ).

Let r > 1 be sufficiently large such that z0 ∈ Br (z∗) and w ∈ B r
2
(z∗). Set

M := [2r + sup{‖T zn‖ : zn ∈ Br (z∗)}]2.

In order to prove the boundedness of {zn}, it suffices to show that {zn} is a sequence in
B = Br (z∗). We do this by induction. Note that z0 ∈ B by assumption. Hence we may
assume zn ∈ B. In order to prove that zn+1 ∈ B, suppose to the contrary zn+1 is not in B.
Then ‖zn+1 − z∗‖ > r and thus from (2.2) we have that

‖zn+1 − z∗‖ ≤ (1 − αn)‖zn − z∗‖
+ αn‖PD(F)×D(K )(zn − λn(T zn + θn(zn − w)))− z∗‖

≤ (1 − αn)‖zn − z∗‖
+ αn‖zn − λn(T zn + θn(zn − w))− z∗‖

≤ ‖zn − z∗‖ + αnλn‖T zn‖ + αnλnθn‖zn − w‖
≤ r + √

M .

Moreover, from (2.2) and the fact that θn ≤ 1, we get that

‖zn+1 − z∗‖2 ≤ (1 − αn)‖zn − z∗‖2

+ αn‖zn − z∗ − λn(T zn + θn(zn − w))‖2

≤ (1 − αn)‖zn − z∗‖2 + αn[‖zn − z∗‖2

− 2λn〈T zn, zn − z∗〉 − 2λnθn〈zn − w, zn − z∗〉
+ λ2

n‖T zn + θn(zn − w)‖2]
≤ ‖zn − z∗‖2 − 2αnλn〈T zn, zn − z∗〉

− 2αnλnθn〈zn − w, zn − z∗〉
+ αnλ

2
n[‖T zn‖ + θn‖zn − w‖]2

≤ ‖zn − z∗‖2 − 2αnλnθn〈zn − w, zn − z∗〉 + αnλ
2
n M.

(2.4)
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Let κ > 0 be sufficiently small such that κ ≤ r2

4

( √
2

(1+√
2)

√
M

)2
and let d := √

κ . Then since

‖zn+1 − z∗‖ > ‖zn − z∗‖ by our assumption, from (2.4) we conclude that

2αnλnθn〈zn − w, zn − z∗〉 ≤ αnλ
2
n M,

and hence

〈zn − w, zn − z∗〉 ≤ λn M

2θn
≤ M

2
κ,

(since λn
θn

≤ κ = d2,∀n ≥ 0 by our assumption). Now adding 〈w − z∗, zn − z∗〉 to both
sides of this inequality we get that

‖zn − z∗‖2 ≤ M
2 κ + 〈w − z∗, zn − z∗〉

≤ M
2 κ + ‖w − z∗‖‖zn − z∗‖

≤ M
2 κ + r

2‖zn − z∗‖.

Solving this quadratic inequality for ‖zn − z∗‖ and using the estimate

√
r2

16
+ M

2
κ ≤ r

4
+

√
M

2
κ,

we obtain that

‖zn − z∗‖ ≤ r

2
+

√
M

2
κ.

But in any case,

‖zn+1 − z∗‖ ≤ (1 − αn)‖zn − z∗‖
+ αn‖zn − z∗ − λn(T zn + θn(zn − w))‖

≤ ‖zn − z∗‖ + αnλn‖T zn + θn(zn − w)‖
≤ ‖zn − z∗‖ + λn(‖T zn‖ + θn‖zn − w‖)
≤ r

2 +
√

M
2 κ + λn

√
M

≤ r
2 + 1+√

2√
2

√
κM

≤ r
2 + 1+√

2√
2

· r
2

√
2

(1+√
2)

√
M

· √
M

= r
2 + r

2 = r,

by the original choices of κ and λn , and this contradicts the assumption that zn+1 is not in B.
Consequently, zn+1 ∈ B and hence {zn} lies in B. This shows that {zn} is bounded.
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Step 3. We claim that limn→∞ d(zn,�) = 0. Indeed, let ẑ = [û, v̂] ∈ � be arbitrary but
fixed. Utilizing the same method as in the reasoning of (2.4), we deduce that

‖zn+1 − ẑ‖2 ≤ ‖zn − ẑ‖2 − 2λnαn〈T zn, zn − ẑ〉
− 2αnλnθn〈zn − w, zn − ẑ〉
+ αnλ

2
n[‖T zn‖ + θn‖zn − w‖]2

≤ ‖zn − ẑ‖2 − 2αnλnθn〈zn − w, zn − ẑ〉
+ αnλ

2
n[‖T zn‖ + θn‖zn − w‖]2

≤ ‖zn − ẑ‖2 + λnθn · 2‖zn − w‖‖zn − ẑ‖
+ λ2

n[‖T zn‖ + ‖zn − w‖]2

≤ ‖zn − ẑ‖2 + λnθn[‖zn − w‖2 + ‖zn − ẑ‖2]
+ λ2

n[‖T zn‖ + ‖zn − w‖]2

≤ (1 + λnθn)‖zn − ẑ‖2 + λnθn‖zn − w‖2

+ λ2
n[‖T zn‖ + ‖zn − w‖]2

≤ (1 + λnθn)‖zn − ẑ‖2 + (λ2
n + λnθn)[‖T zn‖ + ‖zn − w‖]2

= (1 + λnθn)‖zn − ẑ‖2 + (λ2
n + λnθn)M0,

(2.5)

where M0 := sup{[‖T zn‖ + ‖zn − w‖]2 + 1 : n ≥ 0} < ∞ (since T is bounded, and {zn}
is bounded by Step 2). Also since limn→∞ λn/θn = 0, it is clear that there exists an integer
n0 ≥ 0 such that λn < θn,∀n ≥ n0. Thus, according to the condition

∑∞
n=0 λnθn < ∞,

we conclude that
∑∞

n=0 λ
2
n < ∞, and hence

∑∞
n=0(λ

2
n + λnθn)M0 < ∞. Now, taking the

infimum over all ẑ = [û, v̂] ∈ �, we deduce from (2.5) that

[d(zn+1,�)]2 ≤ (1 + λnθn)[d(zn,�)]2 + (λ2
n + λnθn)M0. (2.6)

Consequently, limn→∞ d(zn,�) exists by Lemma 1.3. This shows that

lim
n→∞ d(zn,�) = lim inf

n→∞ d(zn,�) = 0.

Step 4. We claim that {zn} is a Cauchy sequence in D(T ). Indeed, put δn := (λ2
n +λnθn)M0

for all n ≥ 0. From (2.5) we derive for each n ≥ 0

‖zn+1 − ẑ‖2 ≤ (1 + δn)‖zn − ẑ‖2 + δn, ∀ẑ ∈ �, (2.7)

where
∑∞

n=0 δn < ∞. Now put

M̃ =
∞∏

n=0

(1 + δn),

then 1 ≤ M̃ < ∞. Since limn→∞ d(zn,�) = 0 by Step 3, for arbitrary ε > 0 there exists
an integer n1 ≥ 0 such that

d(zn,�) < ε/
√

8M̃, ∀n ≥ n1.

Furthermore,
∑∞

n=0 δn < ∞ implies that there exists an integer n2 ≥ 0 such that
∑∞

j=n2
δ j <

ε2/(8M̃),∀n ≥ n2. Choose N0 = max{n1, n2}.
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Observe that (2.7) yields

‖zn+1 − ẑ‖2 ≤ (1 + δn)(1 + δn−1)‖zn−1 − ẑ‖2 + (1 + δn)δn−1 + δn

≤
n∏

j=N0

(1 + δ j )‖zN0 − ẑ‖2 +
n−1∑
j=N0

δ j

n∏
i= j+1

(1 + δi )+ δn

≤ M̃[‖zN0 − ẑ‖2 +
n∑

j=N0

δ j ].
(2.8)

Note that d(zN0 ,�) <
ε√
8M̃

and
∑∞

j=N0
δ j <

ε2

8M̃
. Thus for all n,m ≥ N0 and all ẑ ∈ �

we have from (2.8)

‖zn − zm‖2 ≤ [‖zn − ẑ‖ + ‖zm − ẑ‖]2

≤ 2‖zn − ẑ‖2 + 2‖zm − ẑ‖2

≤ 2M̃[‖zN0 − ẑ‖2 +
n∑

j=N0

δ j ] + 2M̃[‖zN0 − ẑ‖2 +
m∑

j=N0

δ j ]

≤ 4M̃[‖zN0 − ẑ‖2 +
∞∑

j=N0

δ j ]

≤ 4M̃[‖zN0 − ẑ‖2 + ε2

8M̃
].

(2.9)

Taking the infimum over all ẑ ∈ �, we obtain

‖zn − zm‖2 ≤ 4M̃

(
[d(zN0 ,�)]2 + ε2

8M̃

)
≤ 4M̃

(
ε2

8M̃
+ ε2

8M̃

)
= ε2,

and hence ‖zn − zm‖ ≤ ε. This shows that {zn}∞n=0 is a Cauchy sequence in D(T ).

Step 5. We claim that {zn} converges strongly to an element of�. Indeed, note that {zn}∞n=0
is a Cauchy sequence in D(T ) by Step 4. Let limn→∞ zn = z̄ ∈ D(T ) (since D(T ) is
closed), where z̄ = [ū, v̄]. Since F : D(F) ⊆ H → H and K : D(K ) ⊆ H → H
are continuous mappings, it is easy to verify that � is closed. Therefore, from the fact that
limn→∞ d(zn,�) = 0, we must have that z̄ ∈ �.

Theorem 2.2 Let H be a real Hilbert space. Let F : D(F) ⊆ H → H , K : D(K ) ⊆
H → H be bounded mappings such that T : D(T ) → E is strongly pseudomonotone with
constant κ > 0 where D(F) and D(K ) are closed convex subsets of H . Suppose that� �= ∅.
Let {αn}, {λn} and {θn} be real sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ θn = 0;
(ii)

∑∞
n=0 αnλn = ∞, limn→∞ λn/θn = 0;

Let sequences {un} ⊆ D(F) and {vn} ⊆ D(K ) be generated from u0 ∈ D(F) and
v0 ∈ D(K ), respectively, by{

un+1 = (1 − αn)un + αn PD(F)(un − λn(Fun − vn + θn(un − w1))),

vn+1 = (1 − αn)vn + αn PD(K )(vn − λn(Kvn + un + θn(vn − w2))),
(2.1)

where w1 ∈ D(F), w2 ∈ D(K ) are arbitrary but fixed. Then there exists d > 0 such that
whenever λn ≤ d and λn/θn ≤ d2 for all n ≥ 0, {zn} converges strongly to the unique
solution of system (1.2), where zn = [un, vn] for all n ≥ 0.
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Proof Let z̄ and ẑ be two arbitrary elements in � with z̄ = [ū, v̄] and ẑ = [û, v̂], where
ū, û ∈ D(F) and v̄, v̂ ∈ D(K ). Then z̄, ẑ ∈ D(T ). Moreover, we have{ 〈Fū − v̄, û − ū〉 ≥ 0,

〈K v̄ + ū, v̂ − v̄〉 ≥ 0,

{ 〈Fû − v̂, ū − û〉 ≥ 0,
〈K v̂ + û, v̄ − v̂〉 ≥ 0.

Consequently, we obtain

〈T z̄, ẑ − z̄〉 ≥ 0, (2.10)

〈T ẑ, z̄ − ẑ〉 ≥ 0. (2.11)

Since T is strongly pseudomonotone with constant κ > 0, hence from (2.10) and (2.11) it
follows that

0 ≥ 〈T ẑ, ẑ − z̄〉〉 ≥ κ‖ẑ − z̄‖2.

Thus ẑ = z̄. This implies that � is a singleton. Let � = {ẑ}.
Next, we divide the remainder of the proof into several steps.

Step 1. As in Step 1 of the proof of Theorem 2.1, we can prove that the sequences {un} and
{vn} conforming to (2.1) are well defined.

Step 2. As in Step 2 of the proof of Theorem 2.1, we can prove that the sequence {zn} is
bounded.

Step 3. We claim that the sequence {zn} converges strongly to the unique solution ẑ of system
(1.2). Indeed, utilizing the same method as in the reasoning of (2.4), we deduce that

‖zn+1 − ẑ‖2 ≤ ‖zn − ẑ‖2 − 2αnλn〈T zn, zn − ẑ〉
− 2αnλnθn〈zn − w, zn − ẑ〉
+ αnλ

2
n[‖T zn‖ + θn‖zn − w‖]2

≤ (1 − 2καnλn)‖zn − ẑ‖2 − 2αnλnθn〈zn − w, zn − ẑ〉
+ αnλ

2
n[‖T zn‖ + ‖zn − w‖]2

≤ (1 − 2καnλn)‖zn − ẑ‖2 + 2αnλnθn‖zn − w‖‖zn − ẑ‖
+ αnλ

2
n[‖T zn‖ + ‖zn − w‖]2

≤ (1 − 2καnλn)‖zn − ẑ‖2 + αnλnθn M̂ + αnλ
2
n M̂,

(2.12)

for some constant M̂ > 0 (since {zn} and {T zn} are bounded). Since
∑∞

n=0 2καnλn = ∞,
and

lim
n→∞

αnλnθn M̂ + αnλ
2
n M̂

2καnλn
= lim

n→∞
M̂

2κ
(θn + λn) = 0.

Thus, by Lemma 1.1 we know that {zn} converges strongly to the unique solution ẑ of sys-
tem (1.2). ��
Theorem 2.3 Let H be a real Hilbert space. Let F : D(F) ⊆ H → H , K : D(K ) ⊆
H → H be bounded monotone mappings with R(F) ⊆ D(K ), where D(F) and D(K ) are
closed convex subsets of H satisfying property (P). Suppose that N (T ) := {z∗ ∈ D(T ) :
T z∗ = 0} �= ∅. Let {αn}, {λn} and {θn} be real sequences in (0, 1] satisfying the following
conditions:
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(i) limn→∞ θn = 0;
(ii)

∑∞
n=0 αnλnθn = ∞, limn→∞ λn/θn = 0;

(iii) limn→∞
(
θn−1
θn

−1)
αnλnθn

= 0.

Let sequences {un} ⊆ D(F) and {vn} ⊆ D(K ) be generated from u0 ∈ D(F) and
v0 ∈ D(K ), respectively, by{

un+1 = (1 − αn)un + αn PD(F)(un − λn(Fun − vn + θn(un − w1))),

vn+1 = (1 − αn)vn + αn PD(K )(vn − λn(Kvn + un + θn(vn − w2))),
(2.1)

where w1 ∈ D(F), w2 ∈ D(K ) are arbitrary but fixed. Then there exists d > 0 such that
whenever λn ≤ d and λn/θn ≤ d2 for all n ≥ 0, {zn} converges strongly to an element
z∗ = [u∗, v∗] of � with T z∗ = 0, where zn = [un, vn] for all n ≥ 0.

Proof Since K and F are bounded monotone mappings, we have by Lemma 1.2 that T is a
bounded monotone mapping. Moreover, since D(F) and D(K ) satisfy property (P), we have
that T satisfies the range condition. Furthermore, we observe that if z∗ = [u∗, v∗] ∈ N (T )
then z∗ ∈ �, i.e., � �= ∅ and that the monotonicity of T implies the pseudomonotonicity
of T .

Next, we divide the remainder of the proof into several steps.

Step 1. As in Step 1 of the proof of Theorem 2.1, we can prove that the sequences {un} and
{vn} conforming to (2.1) are well defined.

Step 2. As in Step 2 of the proof of Theorem 2.1, we can prove that the sequence {zn} is
bounded.

Step 3. We claim that {zn} converges strongly to an element z∗ = [u∗, v∗] of�with T z∗ = 0.
Indeed, since T satisfies the range condition, so does θ−1T for θ > 0. Thus for each n ≥ 0
there exists a unique yn ∈ D(T ) such that

yn = (I + 1

θn
T )−1(w). (2.13)

This together with (2.2), yields that

‖zn+1 − yn‖2

≤ (1 − αn)‖zn − yn‖2 + αn‖zn − yn − λn(T zn + θn(zn − w))‖2

= (1 − αn)‖zn − yn‖2 + αn[‖zn − yn‖2 − 2λn〈T zn + θn(zn − w), zn − yn〉
+ λ2

n‖T zn + θn(zn − w)‖2]
≤ (1 − 2αnλnθn)‖zn − yn‖2 − 2αnλn〈T zn + θn(yn − w), zn − yn〉

+ αnλ
2
n‖T zn + θn(zn − w)‖2.

(2.14)

Moreover, since from (2.13) we have that θn(w− yn) = T yn , we obtain that 〈T zn + θn(yn −
w), zn − yn〉 ≥ 0. Furthermore, {zn} and hence {T zn} are bounded. The sequence {yn} is
also bounded, because it is convergent by Theorem SR. Thus, there exists M1 > 0 such that
‖T zn + θn(zn − w)‖2 ≤ M1. Therefore, inequality (2.14) gives

‖zn+1 − yn‖2 ≤ (1 − 2αnλnθn)‖zn − yn‖2 + M1αnλ
2
n . (2.15)

On the other hand, by the monotonicity of T we have that

‖yn−1 − yn‖ ≤ ‖yn−1 − yn + 1
θn
(T yn−1 − T yn)‖

≤ θn−1−θn
θn

(‖yn−1‖ + ‖w‖) = (
θn−1
θn

− 1)(‖yn−1‖ + ‖w‖).
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Therefore, this estimate together with (2.15) yields that

‖zn+1 − yn‖2 ≤ (1 − 2αnλnθn)‖zn − yn−1‖2 + M2

(
θn−1

θn
− 1

)
+ M2αnλ

2
n,

for some constant M2 > 0. Thus by Lemma 1.1, zn+1 − yn → 0. Hence, since by Theorem
SR, yn → z∗ = [u∗, v∗] ∈ N (T ), we have zn → z∗. ��

Theorem 2.4 Let H be a real Hilbert space. Let F, K : H → H be bounded monotone
mappings. Suppose there exist u0, v0 ∈ H such that

‖F(u0)− v0‖2 + ‖Kv0 + u0‖2 < r ≤ lim inf
u,v∈H,‖u‖,‖v‖→∞(‖Fu − v‖2 + ‖Kv + u‖2),

for some r > 0. Let {αn}, {λn} and {θn} be real sequences in (0, 1] satisfying the following
conditions:

(i) limn→∞ θn = 0;
(ii)

∑∞
n=0 αnλnθn = ∞, limn→∞ λn/θn = 0;

(iii) limn→∞
(
θn−1
θn

−1)
αnλnθn

= 0.

Let u0, v0 ∈ H be arbitrary, and let sequences {un} and {vn} be generated from u0 and v0,
respectively, by

{
un+1 = un − αnλn(Fun − vn + θn(un − w1)),

vn+1 = vn − αnλn(Kvn + un + θn(vn − w2)),
(2.16)

where w ∈ H . Then there exists d > 0 such that whenever λn ≤ d and λn/θn ≤ d2 for
all n ≥ 0, {zn} converges strongly to an element z∗ = [u∗, v∗] of � with T z∗ = 0, where
zn = [un, vn] for all n ≥ 0.

Proof Since F and K are bounded continuous monotone mappings, it is known that T :
E → E defined by T z = T [u, v] := [Fu − v, u + Kv] is also a bounded continuous
monotone mapping and hence by Theorem 2 of [10], T satisfies the range condition. Clearly,
T is maximal monotone. Moreover, for z0 = [u0, v0] ∈ E ,

‖T (z0)‖ = ‖T [u0, v0]‖ = (‖F(u0)− v0‖2 + ‖Kv0 + u0‖2)1/2 < r1/2

≤ lim inf
u,v∈H,‖u‖,‖v‖→∞(‖Fu − v‖2 + ‖Kv + u‖2)1/2

= lim inf‖z‖→∞ ‖T z‖.

Thus by Theorem TZ we have that N (T ) �= ∅ and hence by Theorem 2.3 we obtain that
zn = [un, vn] → z∗ = [u∗, v∗] ∈ N (T ), i.e., an element of �.

Theorem 2.5 Let H be a real Hilbert space. Let F : D(F) ⊆ H → H , K : D(K ) ⊆ H →
H be bounded uniformly monotone mappings with R(F) ⊆ D(K ), where D(F) and D(K )
are closed convex subsets of H . Suppose that N (T ) := {z∗ ∈ D(T ) : T z∗ = 0} �= ∅. Let
{αn} and {λn} be real sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ λn = 0;
(ii)

∑∞
n=0 αnλn = ∞;

(iii)
∑∞

n=0 αnλ
2
n < ∞.
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Let sequences {un} ⊆ D(F) and {vn} ⊆ D(K ) be generated from u0 ∈ D(F) and
v0 ∈ D(K ), respectively, by{

un+1 = (1 − αn)un + αn PD(F)(un − λn(Fun − vn)),

vn+1 = (1 − αn)vn + αn PD(K )(vn − λn(Kvn + un)).
(2.17)

Then there exists d > 0 such that whenever λn ≤ d for all n ≥ 0, the sequence {zn} converges
strongly to an element ẑ = [û, v̂] of � with N (T ) = {ẑ} where zn = [un, vn] for all n ≥ 0.

Proof Since F and K are bounded uniformly monotone mappings, it is known that T is a
bounded uniformly monotone mapping, that is, for each z1, z2 ∈ D(T ) there exists a strictly
increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that

〈T z1 − T z2, z1 − z2〉 ≥ φ(‖z1 − z2‖).
Thus it is obvious that T is pseudomonotone. Also since N (T ) �= ∅, we get that � �= ∅.
Next we divide the remainder of the proof into several steps.

Step 1. We claim that the sequences {un} and {vn} conforming to (2.1) are well defined.
Indeed, for initial point z0 := [u0, v0], define the sequence {zn} by

zn+1 := (1 − αn)zn + αn PD(F)×D(K )(zn − λnT zn). (2.18)

As in Step 1 of the proof of Theorem 2.1, we can prove that the sequences {un} and {vn}
conforming to (2.17) are well defined.

Step 2. As in Step 2 of the proof of Theorem 2.1, we can prove that the sequence {zn} is
bounded.

Step 3. We claim that the sequence {zn} converges strongly to an element ẑ = [û, v̂] of �
with N (T ) = {ẑ}. Indeed, let ẑ = [û, v̂] ∈ N (T ) be arbitrary but fixed. utilizing the same
method as in the reasoning of (2.4) and noticing that T ẑ = 0, we deduce that

‖zn+1 − ẑ‖2 ≤ ‖zn − ẑ‖2 − 2αnλn〈T zn, zn − ẑ〉 + αnλ
2
n‖T zn‖2

≤ ‖zn − ẑ‖2 − 2αnλnφ(‖zn − ẑ‖)+ αnλ
2
n‖T zn‖2

≤ (1 − 2αnλnσ(zn, ẑ))‖zn − ẑ‖2 + αnλ
2
n M∗

(2.19)

for some constant M∗ > 0 (since {zn} and {T zn} are bounded), where

σ(zn, ẑ) = φ(‖zn − ẑ‖)
1 + φ(‖zn − ẑ‖)+ ‖zn − ẑ‖2 .

Then it follows from (2.19) that

‖zn+1 − ẑ‖2 ≤ ‖zn − ẑ‖2 + αnλ
2
n M∗. (2.20)

Now, put δn = 0 and bn = αnλ
2
n M∗ for all n ≥ 0. Then (2.20) can be rewritten as

‖zn+1 − ẑ‖2 ≤ (1 + δn)‖zn − ẑ‖2 + bn .

Since
∑∞

n=0 δn < ∞ and
∑∞

n=0 bn < ∞, by Lemma 1.3 we know that limn→∞ ‖zn − ẑ‖
exists. Suppose limn→∞ ‖zn − ẑ‖ = δ ≥ 0. We can prove that δ = 0. Suppose on the
contrary, δ > 0. Let N0 ≥ 0 be an integer such that ‖zn − ẑ‖ ≥ δ

2 ,∀n ≥ N0. Then

φ(‖zn − ẑ‖) ≥ φ

(
δ

2

)
> 0, ∀n ≥ N0.
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Since ‖zn − ẑ‖ ≤ D,∀n ≥ 0 for some D ≥ 0, from (2.19) we obtain that

2αnλn
φ( δ2 )(

δ
2 )

2

1+φ(D)+D2 ≤ 2αnλnσ(zn, ẑ)‖zn − ẑ‖2

≤ ‖zn − ẑ‖2 − ‖zn+1 − ẑ‖2 + αnλ
2
n M∗

(2.21)

for all n ≥ N0. Since
∑∞

n=0 αnλ
2
n < ∞, from (2.21) we derive

∑∞
n=0 αnλn < ∞, which

contradicts the condition
∑∞

n=0 αnλn = ∞. Thus, δ = 0. This implies that {zn} converges
strongly to ẑ. According to the uniqueness of the limit, N (T ) is a singleton.
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